On Instability of Excited States of the Nonlinear Schrödinger Equation
نویسنده
چکیده
We introduce a new notion of linear stability for standing waves of the nonlinear Schrödinger equation (NLS) which requires not only that the spectrum of the linearization be real, but also that the generalized kernel be not degenerate and that the signature of all the positive eigenvalues be positive. We prove that excited states of the NLS are not linearly stable in this more restrictive sense. We then give a partial proof that this more restrictive notion of linear stability is a necessary condition to have orbital stability. §
منابع مشابه
Localized standing waves in inhomogeneous Schrödinger equations
A nonlinear Schrödinger equation arising from light propagation down an inhomogeneous medium is considered. The inhomogeneity is reflected through a non-uniform coefficient of the non-linear term in the equation. In particular, a combination of self-focusing and self-defocusing nonlinearity, with the self-defocusing region localized in a finite interval, is investigated. Using numerical computa...
متن کاملAn efficient analytical solution for nonlinear vibrations of a parametrically excited beam
An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...
متن کاملOn Instability for the Quintic Nonlinear Schrödinger Equation of Some Approximate Periodic Solutions
Using the Fermi Golden Rule analysis developed in [CM], we prove asymptotic stability of asymmetric nonlinear bound states bifurcating from linear bound states for a quintic nonlinear Schrödinger operator with symmetric potential. This goes in the direction of proving that the approximate periodic solutions for the cubic Nonlinear Schrödinger Equation (NLSE) with symmetric potential in [MW] do ...
متن کاملRelaxation of Excited States in Nonlinear Schrödinger Equations
We consider a nonlinear Schrödinger equation in R3 with a bounded local potential. The linear Hamiltonian is assumed to have two bound states with the eigenvalues satisfying some resonance condition. Suppose that the initial data is small and is near some nonlinearexcited state. We give a sufficient condition on the initial data so that the solution to the nonlinear Schrödinger equation approac...
متن کاملClassification of Asymptotic Profiles for Nonlinear Schrödinger Equations with Small Initial Data
We consider a nonlinear Schrödinger equation with a bounded local potential in R. The linear Hamiltonian is assumed to have two bound states with the eigenvalues satisfying some resonance condition. Suppose that the initial data are localized and small in H. We prove that exactly three local-in-space behaviors can occur as the time tends to infinity: 1. The solutions vanish; 2. The solutions co...
متن کامل